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Studies of spalling phenomena with reflection of a shock wave from the free surface of 
a body [i, 2] give unique information about the strength properties of materials in the 
submicrosecond range. However, under these conditions the failure time is comparable with 
the duration of load operation and failure resistance should be talked about as a function 
of the deformation rate and other parameters of state. Therefore, it is necessary to obtain 
data about failure kinetics directly from analysis of experimental data. In implicit form 
this information contains profiles of test specimen surface movement velocity [3]. 

In this work wave processes are analyzed in failed material with reflection of a compres- 
sion pulse from a free surface. The aim of the work is to study the possibilities of 
obtaining data about the failure rate directly from the results of measuring specimen surface 
velocity profiles. 

Statement and Solution of the Problem. We consider in an acoustic approximation evolu- 
tion of a triangular compression pulse after reflection of it from a free specimen surface 
failing with negative pressure. We assume that failure commences on reaching tensile 
stresses of critical value Pc and it is characterized by specific pore volume Vp. The 
total specific volume of the material is the sum of Vp and the specific volume of solid 
component Vs: v = Vp + v s . We use the simplest failure kinetics: the rate of change in Vp 

is a power function of Vp. Since the initial stage of failure is considered then the rule 
for collapse of pores with a positive pressure is immaterial. The set of equations of 
hydrodynamics, closed by equations of kinetics and state, in the Lagrangian variables has 
the form 

av i a~ __0, a~ I ap =0,  (i) 

Oup (pvp)~ : 0 ,  P=p2c=( l /p- -v+ ~p), -~- § p,. 

where t is time; h is Lagrangian coordinate; u is mass velocity; p and c are initial density 
and speed of sound; and ~;~ is characteristic time for relaxation of the failure process; 

< i is a const. In the equation of state pressure is determined by v s = v - Vp. 

Given in Fig. i is a picture of flow in plane t-h. In region I there is no reaction of 
incident wave with the reflected wave and the dependence of mass velocity on pressure coor- 
dinate and time corresponds to the triangular compression pulse: 

u(h, t )=uo- - k ( c t - -h ) ,  P(h, t)=pcu(h, t). (2) 

Here:u 0 is maximum mass velocity; k is a constant characterizing pulse duration 2h0: 

h~=--c~ = --uo/2k. 

In region 3 there is reaction of the incident pulse and that reflected from the free 
surface h = 0 which leads to occurrence of tensile stresses. Their absolute value does not 
exceed the critical value; therefore, the material does not fail and the solution satisfying 
the condition at the free surface has the form 

u(h, t )= 2(uo-- kct), P(h, t)= 2pckh. (3) 
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With h = h c, t = Zc =-hc/c the pressure reaches a threshold Pc and in region 2 there is 

material failure. Here flow is determined as a result of solving set (i) with boundary con- 
ditions with h = h c and h § and initial conditions for the C-characteristic at which the 
functions in question, with the exception of Vp, undergo a jump. It should be noted that 
due to stress relaxation with failure pressure along the C-characteristic may appear to be 
(with certain values of zD) higher than Pc and the failure region will have a more complex 
zonal structure compared with that given in Fig. i. This case corresponding to multiple 
spalling is analyzed in detail below. Now we assume that after reaching the failure thres- 
hold in section h c with lower values of h the material 'weakens.' 

We find a solution in region 2. For this we exclude from (i) Vp and v and substitute 
independent variables: 

T = t + h / c ,  x = h ,  

The failure zone is depicted in part of the fourth quadrant of plane T - x: T > O, x < x c. 
The set of two equations obtained in partial derivatives after applying Laplac~ transforma- 
tions to it with respect to T is converted into a set of normal differential equations 

d----~+7-u+s-:---=Oc ~ Pc ~ ( P ( x , O ) + p c u ( x , O ) ) + F ( s ) ,  

d> , ~ 7~ + ~ = i (t' (z, o) + oc~ (z, o)), 
dx v c 7" 

(4) 

where s is Laplace variable; u and ~ are Laplace images of mass velocity and pressure; F(s) is 
a Laplace image for failure rate pVp whose dependence on time has the form (the dot signi- 

fies a partial derivative with respect to t or with respect to T since they coincide) 

pUp___ ~((l -- =)--T ] =/(I-~) 
T~ ] 

(5) 

In the right-hand part of (4) initial values of u and P with T + +0 are transposed entering 
in the form of a combination which has a Reimann J+-invariant [4]. Therefore it is not 
necessary to determine u and P separately to the right of the jump in the C-characteristic: 
they will be found directly from solving the set. The value of the invariant is found from 
the continuity condition at the jump from its value in region i. In accordance with (2) 
we obtain 

P ( z ,  O) + Ocu(z, O) = 2pC(uo + 2kz )O(x  - -  xo) 

(e(x) is the Heavyside unit function, x 0 = h0). 

The general solution in the failure region not growing exponentially with x -+-~ is 
written in the form 

------ x--x o- 1--e• @ -- -- 

2 -~ f+b ,  

579 



- "< ' - ' o>) l  o' 2k --- ~s ( t  exp  O (x - -  xo) 1 k c ~(x, s) - -  T [ z -  Xo - 7 ",,j T ( 6 )  

(the linear increase in ~ with x +-~ is caused by exclusion from the consideration of pore 
collapse kinetics with positive pressure). Constant b is found from the continuity condi- 
tion for the Reimann J_-invariant with x = x c. In regions 3', 4', etc. (see Fig. i) the 

functional dependence of J_ on coordinate and time is different and the invariant in each 
subsequent region is only determined after finding the solution in the previous region. 
We find the value of constant b in the range 0 ! T ! 2T c. In region 3 in accordance with (3) 

;we have ! 

./_ = - - 2 p c  [ao - -  k (ct  + h)  ] = - - 2 p c  (uo - -  k c T ) .  (7) 

Since the J_-invariant is retained along the C_-characteristic, then relationship (7) gives 
its value in region 3'. By applying a Laplace transformation to (7) and equating the ex- 
pression obtained to the J_-invariant in the failure region following from (6) with x = x c 
we find that 

b = -  T -  
(8) 

Equations (6) and (8) give a solution in the failure region with 0 < T <_ 2T c in Laplace 
images. Some results may be obtained directly from (6) without conversion to originals. 
For example, by using the known property of Laplace transformation [5] lim sG(s) = G(0) we 

S-->oo 

find the value of pressure to the right of the jump along the C_-characteristic with h > h0: 

P~ (Iz - h{) L P = 29ckh  - -  - T  
(9) 

(L = 0 with 0 < a < I and L = i/~p with a = 0), i.e., if the initial failure rate equals 

zero, then pressure in~nediately behind the jump changes the same as in the absence of failure, 
and in particular with h ! h c after reaching Pc it continues to decrease. Therefore, the 

failure region in this case is not limited with h + -~ and multiple spalling is impossible. 

With a = 0 the situation is different: after the start of failure at point hc, ~c pressure 
along the C_-characteristic continues to decrease if TD > I/4k, and it starts to grow if 

�9 D < i/4k. With TD = i/4k pressure remains constant and equal to Pc" Thus, the assumption 

made about material 'weakening' is significant with low fracture toughness when z~ > i/4k. 

We find the free surface velocity with 2T c ~ t ~ 4z c. For this we use the situation 

that the J+-invariant is maintained along the C+-characteristic. Its value at the free 

surface equals pcu(0, t), and with h = h c from the solution obtained in the failure region 

we find that 

pc = - 7 -  7 l - - e x p  -c , c F ( s ) .  

By using known inversion formulas and the properties of Laplace transformation [5, 6], 
for the free surface velocity with 2~ c ! t ! 4T c we have 

~(O,t) 
2u o 

Analysis of the Solution. 

I. ~ = 0, F(s) = I/(s~). 

t c [ ~ -- 2Tc ]II(I-a) 

- -  J " 

This case corresponds to a constant failure rate and the 

solution obtained has the simplest form. 

(lO) 
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Velocity profiles with different Tp plotted by Eq. (I0) are given in Fig. 2. It can be 

seen that as also for pressure there exists a critical value of characteristic failure time 
equal to i/4k (line 2 in Fig. i) with which the free surface velocity after the commencement 

of failure of remains constant: u(0, t) = u s = 2uQ - 4kc< c. With Xp < !/4k (line I) failure 

develops in the form of a spalling pulse in the profile u(0~ t), and with Tp > i/4k (line 3) 

after the start of failure the fall in velocity continues. It is convenient to present the 
result obtained in the following formulation by introducing the failure rate Vp = i/px~ and 

the expansion rate for a specific volume v = k/p in the unloaded part of the incident pulse: 
a spalling pulse in the free surface velocity profile only forms in the case when the 
initial failure rate exceeds by more than a factor of four the failure rate for a specific 
volume in the unloaded part of the incident pulse; the curvature of the spalling pulse front 
is clearly determined by the failure rate: 

) 
We also consider the change in state of a substance along the characteristic on coordi- 

nates P-u. The solution in the failure region emerging from (6) after using inverse trans- 
formation has the form 

P ( h , t )  = 2pckh + 9 c 2 ( t - - h / c  --  2r~/4x,,, 

u ( h . t ) =  2 ( u o - - k c t ) i +  c(t  + 3h/c + 2 ~ d / 4 ~ .  

whence we obtain the connection between P and u along the C+-characteristic in section BC 
(see Fig. I): 

Po (u -- u+) (11) P - -  P+  = 1/(2kT~)- 1 

[P+ and u+ are values of pressure and mass velocity at the point of intersection of the 
C+-characteristic with straight line h = h c (at point C in Fig. I)]. In regions 3' and 4 
along this characteristic 

P--P+=--pc(u--u+). (12) 

It can be seen from (Ii) that trajectories for the change in state along the character- 
istic on coordinates P, u deviate from the straight line determined by Reimann invariants in 
the direction of an increase in mass velocity: the failure process affects not only the 
value, but also the sign of the slope of the trajectory whose change occurs with failure 
rates half (Xp = i/2k) those which are necessary for occurrence of a minimum on the free 
surface velocity profile. 

Shown in Fig. 3 is the nature of change in state of particles along the C+-characteris- 
tic ABCD (see Fig. I) with xp = i/4k. Arrows indicate the direction of movement. The 

initial states lie on straight line ON. After encountering the leading characteristic of 
the rarefaction wave the state of the jump changes from A into B and in the failure region 
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it changes along BC. In the unfailed part of a specimen in section CD the connection be- 
tween P and u is given by relationship (12). With a prescribed value of ~p when a minimum 
first appears in the free surface velocity profile (i.e., u(0, t) = const with t > 2~ c) 

there is merging of trajectories for the change in states in plane P-u in section CD along 
all C+-characteristics intersecting in the failure region, i.e., relationship (12) is 
common for them. This fact was noted in [7]. 

Also shown in Figs. 1 and 3 are C_-characteristic ECF and the trajectory for a change 
in state corresponding to it. In the failure region in section CF pressure remains constant. 
In the general case for the C_-characteristic the connection between P and u has the form 

1 -- 4k-~ 

C_: P--P- = -- Pc i + 4kx~ (u -- u_)~ 

where P_ and u_ are pressure and mass velocity at the point of intersection of the C_- 
characteristic with h = h c. For this the case P_ = P+ and u_ = u+ is given in the diagrams. 

We note that the solution found is correct on condition that pressure is negative in 
that part of the failure region which affects the free surface movement velocity. 

2. ~ > i. In this case the initial failure rate is zero. Given in Fig. 4 is the 
dependence of free surface velocity on time plotted by Eq. (i0). Curves 1-3 relate to an 
increase in either = or Tp. In contrast to the constant failure rate with t = 2~ c the 

derivative of free surface velocity is continuous and a minimum is achieved for t = t m > 

2~c: 

t~ = 2To + (4kT~)(~-~'/~. ( 13 ) 

It is easy to find the corresponding value of velocity u m by substituting (13) in (i0). In 
practice spalling resistance o* is normally determined by the difference in velocities 
Aw = 2u 0 - Um: o* = 0.5pcAw. With constant failure rate o *.= -Pc" For the case in question 

this equality is not fulfilled and spalling resistance depends both on failure kinetics and 
on the rate of expansion of a specific volume in the unloaded part of the incident pulse: 
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Whence it follows in particular that presentation of experimental data on coordinates o*-v 

[3] carries useful information about failure kinetics. Tensile stresses first reach -o* in 

section h* = -o*/(2kpc) < hc, i~ the thickness of spalled plate determined from the mini- 

mum in the free surface velocity profile in this case exceeds the true value of h c. 

We find the failure rate with h = h c at instant of time t relating to tm: t = t m - T c. 

By substituting this value of t in (5) we obtain Vp = 4k/p = 4v, i.e., as with a constant 

failure rate the minimum on the free surface velocity profile, and consequently, the start 
of spalling pulse formation, is observed when the failure rate in the spalling plane equals 
the quadrupled failure rate for a specific volume in the unloaded part of the incident pulse. 

Multiple Spalling. Now we consider specimen failure with = = 0 without assuming that 
the failure region is limited with h § -~. Let after the start of failure at point h c the 
threshold for the start of failure with h < h c decrease to eP c (e < i). Then with T~ < I/4k 

the structure of flow in plane t-h has the form presented in Fig. 5. The left-hand boundary 
of failure region 2 (h = h l) is determined from the condition for equality of pressure EP c. 

As before, the general solution in Laplace images is determined by solving set (4). Two 
constants in this case are found from the continuity condition for the J+-invariant with h = 
h i and the J_-invariant with h = h c. Without dwelling on intermediate calculations we give 
some final results~ As before the change in pressure of a jump along the C_-characteristic 
with hi < h < h c is described by relationship (9) from which in particular it follows that 

h I = hc(l - 4k~)/(l - 4kT~). With ~ ~ 0 the size of the failure region tends toward zero 

(h~ § hc) as it should be with instantaneous spalling. In the second limiting case (~D 

i/4k) the failure region increases without restriction, i.e., we change over to the solution 
considered above. Free surface movement velocity has the form 

u(0, t) t c c = i - -  ~ + ~ (t - -  2Vc) (t - -  2T~) 0 (t - -  2~) ,  ( 1 4 )  
2% 4%~ a 

where ~i = -hl/c~ 

Given in Fig. 6 is a typical free surface velocity profile plotted by Eq. (14)o With 
t < 2~ I the solution of (14) agrees with (i0), i.e., consideration of the situation that the 
failure zone is finite does not affect the formation of the spalling pulse front. With 
t > 2~ I the rate starts to decrease and with the same gradient as in the original incident 
pulse in the range 0 < t < 2~ c (fulfillment of the inequality ~I < 2Tc is assumed, which is 

correct with 4kTB < 1/(2 - e)). At point 2~ i the spalling pulse reaches a maximtm~ (um/(2u0) = 

1 - S~c/~0) which does not depend on failure rate. This is a drawback of the model in ques- 

tion in which in particular no failure criterion is introduced. The second minimum on the 
velocity profile referred to 2u 0 and corresponding to time 4~ c equals 1 - (Tc/~0)(l + (s - 

4k~B)/(l - 4kTB)), i.e., it lies below or above the first minimum u c depending on the sign of 

c - 4k~ D. 

In a similar way it is possible to obtain a solution with h < h I (Fig. 5). In the 

range h' < h < h i a specimen does not fail and the solution is found by the method of charac- 
C 

teristics. From it, in particular, it follows that pressure behind the jump to the right of 
the C_-characteristic increases in absolute value with a reduction in h by the rule 

= 2 k ~ h +  ~ c  ( h c - - h , ) i  

r e a c h i n g  t h e  t h r e s h o l d  f o r  t h e  s t a r t  o f  f a i l u r e  Pc a t  p o i n t  h ~ ,  a n d  t h e  t h i c k n e s s  o f  t h e  u n -  

f a i l e d  p a r t  o f  t h e  s p e c i m e n  h i  - h '  = - ( 1  - r  c .  The  s e c o n d  f a i l u r e  z o n e  o c c u p i e s  t h e  r e -  
C 

g i o n  h i  < h < h ' .  The  d e p e n d e n c e  o f  p r e s s u r e  on h i m ~ n e d i a t e l y  b e h i n d  t h e  jump  i s  g i v e n  i n  a 

t h i s  c a s e  b y  t h e  r e l a t i o n s h i p  
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p = 2k h + 

from which it follows that the sizes of the first and second failure zones coincide: h' - 
C 

h i = h - h~. 
C 

The results provided show that the finiteness of the failure zone markedly affects the 
form of the spalling pulse as a whole without reflecting on front formation. We also note 
that as mentioned above with a zero initial failure rate (a > 0) the failure region is al- 
ways infinite and multiple spelling is generally impossible if no failure criterion is 
introduced. 

Thus, with the scope of acoustics an analytical expression is obtained for free surface 
velocity with constant and zero initial material failure rates. A critical value of failure 
rate is found with which formation of a spelling pulse commences. A method is suggested 
for determining the initial rate of an increase in specific pore volume over the curvature 
of the spelling pulse front not connected with a specific failure model. It is shown that 
spelling resistance, determined from the drop in free surface movement velocity, depends 
in the general case on the failure rate for a specific volume in the unloaded part of the 
incident pulse. 
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